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Large-scale instabilities of turbulent wakes 
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The equations describing the statistioal features of small amplitude waves in a 
turbulent shear flow are derived from the Navier-Stokes equations. Closure is 
achieved through a postulated constitutive equation for the alteration of the 
statistical properties of the turbulence by the organized wave. The theory is 
applied in an examination of the stability of a hypothetical wake consisting of 
small-scale turbulence enolosed within a steady uncontorted superlayer. A set of 
superlayer jump conditions is derived from fundamental considerations, and these 
are of more general interest. For this hypothetical flow the analysis predicts large- 
scale instabilities and superlayer contortions reminiscent of large-eddy struc- 
tures observed in real flows. These instabilities therefore offer an explanation of 
the presence of large-scale organized motions in turbulent free shear flows. 

1. Introduction 
Turbulent shear flows are known to possess a rather high degree of organiz- 

ation. The large-eddy structure in wake flows has been studied in detail by 
Townsend (1956), Grant (1958) and, more recently, by Payne & Lumley (1967). 
Kovasznay, Kibens & Blackwalder’s (1970) measurements in the wake region of 
a turbulent boundary layer give added insight into the structure near the 
convoluting superlayer. The origin of the large-scale structures is not well under- 
stood. Townsend (1966) sought an explanation in terms of a Kelvin-Helmholtz 
instability of a presumed vorticity concentration at the superlayer, but the 
selective-sampling measurements of Kovasznay et aZ. indicate that no such 
vorticity concentration exists. 

The objective of the present paper is to show that a turbulent wake structure 
confined within a smooth uncontorted superlayer would be dynamically unstable 
to two- and three-dimensional wave-like disturbances. The Kelvin-Helmholtz 
instability arises because of a vorticity maximum within the wake, rather than 
a vorticity maximum at the superlayer. These instabilities give rise to the organ- 
ized large-eddy structures, the amplitudes of the large-scale motions being 
determined by nonlinear interactions between such motions. 

2. The governing equations 
We require a closed set of dynamical equations for the velocity components of 

an organized wave superposed on a turbulence field. The development here is 
abbreviated; see Hussain & Reynolds (1970b) for more detail. 
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FIGURE 1. The undisturbed flow field. 

In  order to sort out an organized wave disturbance from a turbulent velocity 
field it is convenient to split the velocity into three parts: 

ui = ;ll,+iii+u;. (2.1) 

Here ?li is the time-averaged component, obtained in the conventional manner, 
u; the turbulence, andGi the organized wave. The wave component can be identi- 
fied by phase averaging the total signal. Taking an average of the signal at a 
given phase in the cycle of the basic wave, and denoting this average by ( ), we 
have 

The dynamical equation for the organized wave is found from the Navier 
Stokes equation by introducing (2.1)) phase averaging and subtracting the time 
average. On neglecting quadratic terms in ?&, this results in 

aiiilax, = 0, (2.3a) 

(2.3b) 

__ 
where fii = (u! 2 3  u!) - u' i j -  u.1 ( 2 . 3 ~ )  

Here we have normalized using suitable characteristic length and velocity scales 
IS and U,; R = V,IS/v. For a discussion of the equations for the energies and 
uTi  see Reynolds & Hussain (1972). The term f i j  as defined in ( 2 . 3 ~ )  repre- 
sents the oscillation in the background Reynolds stress produced by the passage 
of the organized wave. The closure problem presents itself in the determination 
of f i j ,  for which some additional information must be given. 

Our objective is to consider a turbulent wake surrounded by an uncontorted 
superlayer, i.e. a wake initially devoid of large-scale eddy structures (see figure 1). 
The stability analysis will then suggest a mechanism by which large-scale dis- 
turbances arise and are maintained. Hence, Ci will represent the large-scale mo- 
tions and u; the small-scale turbulence. It can be argued from reasonably funda- 
mental grounds (see, for example, Lumley 1967a, b,  1970) that in the limit 
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of weak slowly changing large-scale deformations the small-scale structure acts 
like a viscous fluid, i.e. it possesses an eddy viscosity. With due reservations we 
set 

(u;.;) = +q2s+j-2€(EJiiij+Llij), (2.4) 

where 4 2  = (u;u;), 

Here E is the ‘eddy viscosity’ of the small-scale turbulence. Now, if we further 
assume that the periodic distortions do not alter the turbulence energy,-f but 
merely serve to alter the isotropy of the small-scale structure, it follows that 

This is our closure model. In  addition we shall neglect viscous forces and assume 
that B is uniform over the region within the superlayer and zero outside the 
superlayer. 

As in conventional stability theory, we shall treat the basic flow as quasi- 
parallel, with i‘i% = [U(y), 0, 01. The dynamical equations then admit eigensolu- 
tions of the form 

We use (xl, x2, XJ = (x, y, 2). The resulting equations for a, may be combined and 
reduced using the Squire transformation to  a single fourth-order equation, which 
with our assumptions is precisely the Orr-Sommerfeld equation of conventional 
stability theory (Lin 1955): 

(2.7) 

Giii = a,(y)exp[i(cxx+Pz-act)]. (2.6) 

{ (D2-k2)2 - i&, [ (U-~)  ( D 2 - k 2 ) -  U ” ] } @  = 0. 

Here @(y) is the disturbance (u2 or stream function) amplitude, k2 = a2+P2, 
k being the (normalized) total wavenumber, D = d/dy, cis the (normalized) wave 
speed and R, = V,S/s is the Reynolds number based on E .  Equation (2.7) will be 
used to describe the disturbance eigenfunctions in the turbulent region enclosed 
by the uncontorted superlayer. 

The organized motions in the non-turbulent region outside the superlayer will 
be described by the inviscid form of (2.7) : 

{ ( U - C ) ( D ~ - ~ ~ ) - U ” } @  = 0. (2.8) 

3. Superlayer jump conditions 
In  order to connect the solutions in the turbulent and non-turbulent regions 

properly, coupling conditions across the superlayer must be derived. The 
conditions are independent of the constitutive model and are of considerable 
interest in their own right. 

The superlayer coupling conditions will be developed by considering a thin 
control volume about a segment of the layer (figure 2), treating the superlayer 
in a quasi-steady manner. We shall denote the (dimensional) quasi-steady mean 

t Perhaps realistic for rapid distortions. 
31-2 
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FIGURE 2 .  Control volume for derivation of the superlayer 
jump conditions. 

velocity field by (U,, U,, 0), where U, and U, are the components normal and 
tangential to the local superlayer surface. This mean field may possess a vorticity 
oomponent Sl, in the plane of the superlayer perpendicular to the n, t plane: 

au, au, 
P ax, ax, 

Q =--- 

The n, t and p axes then form a locally orthogonal system, the t ,  p plane being 
the superlayer. The n axis is considered to be directed inwards towards the tur- 
bulent fluid. The subscripts I and T will denote the irrotational and turbulent 
regions respectively. Viscous stresses on either side will be neglected. 

For incompressible flow, a mass balance gives 

Un, = UnT- ( 3 . 1 ~ )  

The normal momentum balance gives 

P, = (P+p?),, ( 3 . l b )  

where P denotes the mean pressure and pqrepresents the turbulent normal 
stress exerted on the control volume. The tangential momentum balance gives 

pun(ut,-U,,)-(Puk&)~ = 0. ( 3 . 1 ~ )  

The term -pul,ui represents the turbulent shearing stress on the superlayer; 
if this stress is not zero then the mean (quasi-steady) velocity component U, 
tangential to the layer must exhibit a discontinuity across the layer. These three 
equations can alternatively be derived by integration of the appropriate differen- 
tial equations across the superlayer. 

Equations (3.1) do not form a complete set of coupling conditions. If one 
assumes U, = 0 (which neglects entrainment), then from ( 3 . 1 ~ )  the layer can 
support no stress, as Townsend (1966) assumed. With this additional assumption 
(3.1 a-c) yield Townsend's coupling conditions. 

A fourth superlayer equation can be derived by integration of the vorticity 
equation across the superlayer, and with this additional equation the coupling is 
complete. The equation for Q p  is (Townsend 1956) 

- 
- 
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where wk is the fluctuation vorticity, wk = au@xn - auklax,, and no summation 
is implied. Both the mean and fluctuating vortices are zero in the irrotational ex- 
ternal flow. Let us integrate this equation across the superlayer in then direction. 
If we assume that the structure is locally homogeneous in the plane of the super- 
layer, the alax, terms do not contribute. Then, neglecting the viscous diffusion 
away from the superlayer, i.e. at  I and T, but not, of course, the viscous effects 
within the superlayer, integration from I to T gives 

-- (un 0,p + ukwb -uk wk)T = 0. 

Now, 

and, with some manipulation, the right-hand side becomes 

The second term vanishes by continuity and the last two vanish by the assumed 
homogeneity in the plane of the superlayer. Hence, the vorticity jump condition 
is 

( 3 . l d )  

Equation ( 3 . l d )  requires that there be a discontinuity in mean vorticity across the 
superlayer proportional to the Reynolds stress gradient at the layer. This is in 
accord with the simplified model of Kovasenay (1967) and the experiments of 
Kovasznay et al. (1970). 

4. Completion of the problem formulation 
To apply the superlayer jump conditions in the problem at hand we assume 

that U(y) = constant in the irrotational region. The superlayer surface is de- 
scribed by f ( x ,  z, t )  and we put 

f = qexp [i(ax+,&-czct)]. (4.1) 

G I -  - - ibe-kv, = b e--ky, (4.2) 

The solution to (2.8) in the inviscid region must decay as y + co, and we have 

where b is a constant. Equation (2.7) is solved numerically in the turbulent region, 
and the two regions are coupled by linearized equations derived from (3.1). 
In  deriving these equations care must be taken to transfer properly the condi- 
tions from the surface y = f + f to the undisturbed surface y = f using the usual 
expansion techniques; the quasi-steady field U, is replaced by Tii +G, in (3.1) and 
time averages by phase averages. The following conditions result : 

Continuity (3.1 a): 
A 

Q = [ -9+ia(U-c)qI I  = [ - a + i d ( u - C ) f j ] T  at y = f .  (4.3a) 

Normal momentum (3. I 6 )  : 

$1 = ($-2D&/R,)T at y = 7. ( 4 . 3 b )  
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FIGURE 3. Eigenvalues for the cosine wake. 

Tangential momentum (3.1 c) : 

Vorticity (3.1 d )  : 

It is of interest to compare these with conditions used previously, and to relate 
them to experimental data. Townsend’s (196!) condition of zero shear results 
from ( 4 . 3 ~ )  if the entrainment perturbation Q is zero and the mean profile is 
such that D2U = 0 at  the undisturbed superlayer. It seems preferable to allow 
for perturbations in the entrainment rate. Kibens’s (1968) data indicate that the 
velocity discontinuity at the superlayer is negligible and that the velocity gradi- 
ent in the vicinity of the superlayer is constant, irrespective of the superlayer 
position. This latter observation is equivalent to the condition 

(;/a) D20 + (D2V)  @ = 0 a t  y = q. (4.4) 

Equation (4.4) follows from ( 4 . 3 ~ )  for small longitudinal wavenumbers if 
U, - U, = 0 at  the superlayer. Kibens’s observations is therefore a natural conse- 
quence of the tangential momentum condition. 

Before Kibens’s data were available, we studied a number of wake profiles 
possessing a velocity discontinuity at  the superlayer using the conditions (4.3). 
These calculations showed instabilities at typical eddy Reynolds numbers, from 
an analysis along the lines of that of Townsend (1966). These results will not be 
reported here, as it now seems clear that there is no substantial velocity dis- 
continuity across the superlayer. 
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In  order to study superlayer waves in flow without a discontinuity in velocity 
at the superlayer, calculations were carried out using a cosine profile: 

I *[l-cos(ny)] -1 < y 6 1, 

y < - l , y  > 1. U = (  1 (4.5) 

Here the maximum velocity defect is used as the characteristic velocity and the 
half-thickness of the turbulent region is the characteristic length (figure 3). 
U(y) and c are measured relative to  the velocity at the centre of the wake. In  
this normalization the free-stream speed is unity and (4.2) describes the eigenfunc- 
tions in the free stream. The profile (4.5) represents what would be observed in a 
mean wake field which is not diffusing into the free stream. Hence any unstable 
motions will lead to interaction and to the entrainment of non-turbulent fluid 
and such instabilities should be predicted by the theory. The instability is a conse- 
quence of the vorticity maximum within the turbulent region, a t  the points 
y = & + for the profile (4.5). It is a Kelvin-Helmholtz type instability, but not 
an instability of the superlayer as was suggested by Townsend (1966). 

The eigenvalues for eigenfunctions symmetric about the centre-line (y = 0) 
were calculated from numerical solutions of (2.7) satisfying the superlayer 
matching conditions (4.3). Figure 3 shows the eigenvalues c(a, p, Re).  Note that 
the critical R, is about 10 and that a band of unstable oblique waves can exist at  
R, = 20. The wave speeds are very close to the maximum speed (unity in this 
normalization), and the growth rates are substantial. Experiments (Schlichting 
1968) indicate that R, M 20 in wake flows, and hence we expect real flows to 
possess large-scale three-dimensional structures over a band of wavenumbers. 

5. Conclusions 
Using a Newtonian eddy viscosity to represent the effect of small-scale turbu- 

lent motions on large-scale organized waves, we have shown that a turbulent 
shear flow confined within a smooth uncontorted superlayer would be unstable 
to a band of large-scale two- and three-dimensional wave disturbances. The 
instability manifests itself in contortions of the superlayer interface and in wave 
disturbances that travel downstream at speeds slightly below the free-stream 
velocity. The amplitude and structure of the resulting finite disturbances could 
be estimated by nonlinear analysis (Liu 1971), but the extension of the closure 
model to the finite amplitude problem would be highly questionable. The 
present model provides the explanation for the large eddy (wave) structure 
observed in free shear flows and for the existence of waves on the superlayer 
interface. 

The basic flow considered here, i.e. a parallel flow bounded by smooth uncon- 
torted superlayers, is not observed, because of the instability described above. 
The entrainment resulting from the instability will lead to thickening of the 
turbulent flow and as the wave disturbance amplitudes grow, their Reynolds 
stresses will add to those of the background turbulence, causing additional dis- 
tortions of the flow. The present analysis suggests that (normalized) wavenumbers 
of the order of k = 1 will dominate the large-scale structure. This corresponds to 



488 W .  C .  Reynolds 

scales of the order of three times the thiokness of the ‘undisturbed’ turbulent 
core, which might correspond to scales of the same order of magnitude as the 
thickness of the fully developed turbulent wake. This is in general agreement 
with experiments. The analysis also suggests that the convection velocity of large- 
scale disturbances will be about 20 % of the velocity defect below the free-stream 
speed, and this is also comparable with observations in real flows. 

This work was supported by the National Science Foundation and by the 
Mechanics Branch of the Air Force Office of Scientific Research. This work grew 
out of a general study of organized motions in turbulent shear flows (see Hussain 
& Reynolds 1970a, b, 1972; Reynolds & Hussain 1972), and was first reported at  
a NATO Advanced Study Institute a t  Imperial College in the summer of 1968 
(see Ffowcs Williams, Rosenblat & Stuart 1969). 
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